If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+12X-56=0
a = 1; b = 12; c = -56;
Δ = b2-4ac
Δ = 122-4·1·(-56)
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{23}}{2*1}=\frac{-12-4\sqrt{23}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{23}}{2*1}=\frac{-12+4\sqrt{23}}{2} $
| X^2-12x+56=0 | | 5^3x=7^2x | | 2x(3x+8)-6x-16=0 | | -10(s+3)=-72 | | (5x-2)=(3x+12) | | (3x+13)=2(x+9) | | (3x-4)=(x+5) | | -6(x-2)-2(3x+5)=-22 | | 4(x-4)+5=9 | | 36/2y=136 | | 8x=20+2x+8 | | -5(x+2)+9=-51 | | -y^2+11y=6 | | 3^(6x-5)=38 | | 3(x+1)+2(x-1)=26 | | x-7/6+1/11x=2/11 | | 3^d=243 | | 6m-5=2m=29 | | (3x+1)^2=(2x−5)^2 | | (3x+1)2=(2x−5)2 | | 2c+7=-17 | | x²+5x=1 | | x3+5x=1 | | 5x-9=3x=2 | | 5^n=2000 | | -3y-6=-186 | | 3+2x-1/2(x/2+1)-3/4x=3/4x+x+3/2 | | U(x)=5x^-10x+1 | | U(x)=5x2-10x+1 | | (2w)+(2*2.5w)=393/8 | | -6/7x+36=-30 | | 4n+3.7=10.9 |